65785Appact-melt with Pink Spinel Tr Impact-melt with Pink Spinel Troctolite clast 5.16 grams Figure 1: Photo of rake sample 65785 showing clast of pink spinel troctolite (PST) imbedded in recrystallized impact-melt. Scale in mm. NASA S72-48821. #### Introduction This small rake sample contains a coarse-grained pink spinel troctolite clast in a crystalline feldspathic impact melt rock (figure 1). The impact melt has been dated at 3.97 b.y. ## **Petrography** Dowty et al. (1974b) describe the pink spinel troctolite clast (figure 2). It is modally 65% plagioclase (An_{98}), 30% olivine (Fo_{85}) and 5% Mg-Al spinel. The pink spinel occurs as one large crystal (1 mm). Irregular plagioclase grains (0.1 – 1 mm) are surrounded by one large olivine grain. Minor phases are pyroxene, ilmenite, armalcolite, rutile, metal, troilite, whitlockite, farringtonite and K-feldspar (Warner et al. 1976). Warner et al. (1976) describe the crystalline impactmelt rock that surrounds the clast. In it the plagioclase (An₉₅) occurs predominantly as laths about 0.2 mm long ophitically within olivine (Fo₇₉) and minor pyroxene grains. The fine-grained portion also has trace spinel, chromite, armalcolite, whitlockite, apatite, zirkelite and schreibersite as minor phases. Keil et al. (1975) suggested that the melt-rock portion of 65785 may be a mixture of the troctolite lithology Figure 2: Thin section photomicrograph of pink spinel troctolite clast in 65785 (Dowty et al. 1974). Large spinel grain at bottom. Width of field about 2 mm. with KREEP. Ryder and Norman (1980) summarize the results. ## **Mineralogy** **Olivine:** The olivine occurs as a large grain surrounding and including the other phases in the thin section of the pink spinel troctolite clast. It is slightly more mafic (Fo_{85}) than the olivine found in the surrounding matrix (Fo_{80}) . **Farringtonite**: Dowty et al. (1974b) and Warner et al. (1976) reported a rare phosphate $(Mg_3(PO_4)_2)$ in the pink spinel troctolite clast. **Pyroxene:** The pyroxene in 65785 is mafic in composition (figures 4 and 5). *Plagioclase:* Plagioclase is An95-98. **Mg-Al Spinel:** The large pink spinel grain in 65785 is zoned in Cr content (2.6 to 12.6%), increasing outward from the center (Dowty et al. 1974b). **Armalcolite:** Dowty et al. (1974) determined the composition of armalcolite grains and reported on unpublished Pb-Pb age dating by ion microprobe analysis. **Metallic iron:** Dowty et al. (1974b) found Ni = 2-25%, Co = 0.5-1.5% Figure 3: Plagioclase and pyroxene composition diagram for 65785. Figure 4: Pyroxene and olivine composition of troctolite clast (PST) in 65785 (from Dowty et al. 1974). Figure 5: Pyroxene and olivine composition of meltrock portion of 65785 (Warner et al. 1976). Figure 6: Composition of matrix portion of 65785 (Murali et al. 1977). # **Chemistry** The pink spinel troctolite composition was determined by broad beam electron probe analysis (Warner et al. 1976). Murali et al. (1977) reported the trace element analysis of the surrounding impact-melt (table 1, figure 6). ## Radiogenic age dating Schaeffer and Schaeffer (1977) determined the Ar/Ar plateau age of the feldspathic matrix of 65785 (figure 7). Dowty et al. (1974) reported ion probe Pb-Pb age data by Anderson and Hinthorne for three armalcolite grains in the troctolite clast. ### Cosmogenic isotopes and exposure ages Eldridge et al. (1974) found the cosmic ray induced activity for ²²Na = 45 dpm/kg. and ²⁶Al = 59 dpm/kg. Schaeffer and Schaeffer (1977) determined a cosmic ray exposure age of 271 m.y. Figure 7: Argon release pattern for 65785 (Schaeffer and Schaeffer 1977). # Summary of Age Data for 65785 Pb/Pb Ar/Ar Schaeffer and Schaeffer 1977 Anderson and Hinthorne 4.0 in Note: old decay constant for K. $3.97 \pm 0.02 \text{ b.y.}$ in Dowty et al. 1974 Table 1. Chemical composition of 65785. | reference
weight | bulk
Eldridge 75
5 g | | glass
Murali 77
130 mg | | feld clast
Warner 76 | | PST clast
Warner 76
Dowty 74 | | Ehmann 75 | |--|----------------------------|-----|---|---|------------------------------------|---|--|-----|---| | SiO2 % TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 S % sum | 0.22 | (c) | 0.7
24.5
7
0.085
12.7
13.6
0.53
0.26 | (a)
(a)
(a)
(a)
(a)
(a)
(a) | 5.2
0.08
10.4
12.3
0.7 | (b)
(b)
(b)
(b)
(b)
(b)
(b) | 41.1
0.07
29.9
3.7
0.03
9.6
14.8
0.29
0.04
0.04 | (b) | mentioned
in Ryder
and Norman
1980 | | Sc ppm
V
Cr
Co
Ni
Cu
Zn
Ga
Ge ppb
As
Se
Rb
Sr
Y | | | 9.9
44
1130
22
302 | (a)
(a)
(a)
(a)
(a) | | | | | | | Zr Nb Mo Ru Rh Pd ppb Ag ppb Cd ppb In ppb Sn ppb Sb ppb Te ppb Cs ppm | | | 271 | (a) | | | | | | | Ba
La
Ce
Pr | | | 190
19.2
60 | (a)
(a)
(a) | | | | | | | Nd
Sm
Eu | | | 9.8
1.3 | (a)
(a) | | | | | | | Gd
Tb
Dy
Ho
Er
Tm | | | 1.8
12 | (a)
(a) | | | | | | | Yb
Lu
Hf
Ta
W ppb
Re ppb | | | 6.4
0.91
7
0.82 | (a)
(a)
(a)
(a) | | | | | | | Os ppb
Ir ppb
Pt ppb | | | 7 | (a) | | | | | | | Au ppb
Th ppm
U ppm | 3.03
0.97
(a) INAA | (c) | 14
2.4
broad bea | (a)
(a)
am e | lec. Probe | (c) | radiation | сои | ntina | technique: (a) INAA, (b) broad beam elec. Probe, (c) radiation counting